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In this paper, a mode subtraction method is presented to investigate the sensitivity of
changes in displacement mode shape of annular plates relative to the hole size. It is proved
that the displacement modes are sensitive to the presence of a hole in a plate. Jump
phenomena are observed in the &&residual mode shape'', and the number and locations of
peaks are determined based upon the displacement modal analysis. Numerical analyses of
the changes in displacement mode shapes for di!erent boundary conditions (C}F, S}F, F}F)
and relative hole sizes are given. Experimental tests show good agreement with the
numerical results.
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1. INTRODUCTION

The annular plate is one of the most popular kinds of components used in mechanical and
structural engineering, and the complicated dynamic characteristics and vibration analyses
of annular plates have been the focus of research e!orts [1}3]. Usually, natural frequencies
and mode shapes are the major parameters for vibration analysis of annular plates, and
fruitful results have been presented for years [4}7]. In recent years, most researchers have
investigated the dynamic behaviours at the circumference of the hole for di!erent structures
using the strain modal analysis, and veri"ed that strain mode is sensitive to the local
changes of structures, while displacement mode is not [8}10].

Since both the strain mode and displacement mode are intrinsic dynamic characteristics
of a structure and correspond to each other, research of the vibration behaviour at the
circumference of the hole in annular plates using displacement modal analysis is of great
interest. Literature surveys show that although some investigators have discussed the
changes at the damaged region of a beam, they believe that changes in the displacement
mode shapes are not localized to the damaged region [11]. For annular plates, no one has
reported results on this aspect in detail.

Based on this consideration, the present work describes the theoretical and
computational aspects of the mode subtraction method in analyzing the vibration
behaviours at the circumference of the hole in annular plates with three types of boundary
conditions: clamped}free (C}F), simply supported}free (S}F) and free}free (F}F). The
di!erences in the normalized displacement mode shapes are derived, and the number and
locations of peaks at the circumference of the hole are discussed. Then, numerical results
and experimental tests are given to indicate the e!ectiveness of the method presented for
vibration analysis of annular plates. Finally, some conclusions are drawn.
0022-460X/00/190807#16 $35.00/0 ( 2000 Academic Press
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2. FORMULATION AND SOLUTION

The equation of motion of an annular plate with polar co-ordinates (r, h) is given by [12]

D+4w (r, h, t)#oh
L2w(r, h, t)

Lt2
"0, c)r(a, (1)

where

+2"
L2

Lr2
#

1

r

L
Lr

#

1

r2

L2

Lh2
.

w, D, o and h are the transverse de#ection, #exural rigidity, density and thickness of the plate
respectively. c and a are the radii of the hole and the plate respectively. Based on the
vibration analysis of plate and mode superposition theory, the solution of equation (1) can
be approached using
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In equations (2) and (3), p is the circular frequency of natural vibration in radians per
second. J

n
, Y
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and H
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are the Bessel function of the "rst kind, the second kind and the

Hankel function of the "rst kind of order n, respectively, (A
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) are the
coe$cients, k"a (p2oh/D)1@4 is the frequency parameter, and a a constant related to the
orientation of the mode shape.

Equation (2) contains the information of circular frequency p and mode shape=
n
(r, h)

for the annular plate. Detailed solutions of the coe$cients A
in

(i"1,2, 4) of Bessel
function in determining the mode shapes functions expressed as equation (3) for three
common types of boundary conditions are given in Appendix A.

In order to investigate the vibration behaviour at the circumference of the hole in an
annular plate, a mode subtraction process, which evaluates the relative change of the same
order normalized mode shapes of plates with c/aO0 and c/a"0, is studied analytically
and presented later.

Consider an annular plate with a free inner edge (c/aO0) vibration at the nth normal
mode. The bending moment of the plate can be expressed as [13]
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where l is the Possion ratio. Obviously, the bending moment at the free inner edge of the
plate must be zero, i.e., M

n
(r, h) Dr"c"0. Applying some manipulations to equation (4), the

curvature of the normalized displacement mode along radial direction can be expressed
as [13]
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For the case of c/a"0 (a circular plate without hole), the bending moment M
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satis"es
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The corresponding curvature of the normalized displacement mode can be expressed
as
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In equation (8), =M
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(r, h) is the nth normalized mode shape of a circular plate expressed
as
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Then the di!erence in curvature between the same order normalized displacement modes of
a circular plate and of an annular plate is
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Equation (10) can be rewritten as

D=M @@ (r, h)"t (n) e i(nh#a)
#u (h), n"0, 1, 2,2, (11)
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where
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Integrating equation (10) twice leads to
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when r"c. The change of the same order-displacement mode, which is de"ned as the
residual mode shape, is given by
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Re stands for the real part of the corresponding function. From equation (7), u (h) can be
expressed as u(h)"g (n) e i(nh#a). Without loss of generality, denote
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By substituting equation (17) into equation (14) and di!erentiating with respect to h,
equation (16) can be rewritten as
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From the above analysis, the following can be observed:

f In equation (14), changes increase signi"cantly with the increase of c.
f In the case of n"0, i.e., the "rst mode, D=M

n
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#1
2
uc2. That is to say, when

h varies from 0 to 2n, D=M
n
(c, h) retains the same value. This means that only one peak

appeared around the hole.
f In the case of nO0, peaks can be observed at those locations where equation (19) can be

satis"ed, and the number of peaks is equal to 2n. For example, there are two peaks for the
second mode (n"1), and four peaks for the third mode (n"2).

f Changes at the circumference of the hole would be observed using displacement modal
analysis, i.e., the residual displacement mode is sensitive to the discontinuity of structures.

3. NUMERICAL RESULTS

To verify the theoretical prediction in the previous section, the vibrations of an annular
plate are analyzed for di!erent boundary conditions and hole size (c/a) ratios. According to
equation (A4), the frequency parameter k can be solved and listed in Table 1. The
coe$cients (A

1n
, A

2n
, A

3n
, A

4n
) in determining mode shapes are solved by equations (A5),

(A7), (A9), respectively, and the displacement modes are identi"ed using equation (3) and
normalized by dividing the whole set of de#ections by the maximum value.
TABLE 1

Frequency parameter k (l"1
3
)

c/a Ratio

Case Mode 0 0)05 0)1 0)2 0)4

C}F (1, 0) 4)610 4)609 4)603 4)526 4)403
(2, 0) 5)905 5)898 5)878 5)811 5)598

S}F (1, 0) 3)733 3)732 3)729 3)685 3)450
(2, 0) 5)064 5)059 5)044 4)993 4)806

F}F (2, 0) 2)291 2)288 2)280 2)247 2)128
(3, 0) 3)549 3)495 3)495 3)490 3)430
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Figures 1(a) and 1(b) show the normalized displacement modes of the C}F annular plate
with c/a"0 and c/a"0)1 respectively. Comparison of Figures 1(a) and 1(b) shows that the
same order mode shapes are nearly the same, i.e., no obvious change can be found.
However, after subtraction of one mode shape from the other, some obvious changes can be
observed at the circumference of the hole. The residual mode shapes of the same order
displacement modes are plotted in the form of mesh and contour curves in Figure 1(c). It can
be found that the maximum di!erences occur around the hole, whereas changes are trivial
outside the hole, and two peaks appear in mode (1,0) and four in mode (2,0).

Figures 2(a) and 2(b) give the residual mode shapes of the C}F annular plate with
di!erent c/a ratios for modes (1,0) and (2,0) respectively. When the c/a ratio is decreased
from 0)2 to 0)05, the amplitudes of changes decrease correspondingly, but peaks can still be
observed around the hole. It means that although the peaks of the residual mode shape for
annular plates with a larger hole is more dramatic than that in the case with a small hole,
peaks occur even for a very small hole. This phenomenon gives us some clues on damage
detection for circular plates.
Figure 1. Displacement mode shapes of the C}F annular plate for modes (1,0) and (2,0). (a) c/a"0; (b) c/a"0)1;
(c) (a)}(b).



Figure 2. Residual mode shapes of the C}F annular plate with c/a"0)2 and 0)05. (a) mode (1,0); (b)
mode (2,0).
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The displacement mode shapes and residual mode shapes for the S}F and F}F annular
plates are plotted in Figures 3}6, and similar results have been obtained. In Figure 5, since
the "rst two modes ((0, 0) and (1, 0)) correspond to the rigid-body translation and rotation
for the F}F plate, modes (2,0) and (3,0) are selected for discussion.

From Figures 1}4, it can be seen that a node circle appeared at the same location in the
di!erence mode shape even though it did not in the normal displacement mode shape. The
reason is that the di!erence mode shape given by equation (13) can be expressed as the
function of r and the node circle will appear at those locations where D=M

n
(r, h)"0 is

satis"ed. Obviously, if vibration sensors are located at the node circle of D=M
n
(r, h), no

change in displacement mode can be obtained. It would help the determination of sensor
locations during measurement.

It should be pointed out that when the dimension of a hole equals the dimension of
a nodal circle, no peak can be observed using the mode subtraction method. Figure 7 shows
the residual mode shapes of the S}F annular plate with c/a"0.4. In Figure 7(a), since the
hole overlaps with the nodal circle exactly, no peak is found around the hole for mode(1,0).
Two peaks are observed in the case of c/a"0)2 as shown in Figure 4(a). Figure 7(b) is for
mode (2,0), and four peaks are clearly observed.



Figure 3. Displacement mode shapes of the S}F annular plate for modes (1,0) and (2,0). (a) c/a"0; (b) c/a"0)1;
(c) (a)}(b).
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4. EXPERIMENTAL ANALYSIS

In this section, experimental tests in a vibration analysis of mode (1,0) for the C}F
annular plate have been carried out. The parameters of the thin steel plate are: a"70 mm,
h"0)2 mm, E"200 GPa, o"7800 kg/m3, l"0)3 and c/a"0)2. The schematic diagram
of the experimental set-up is shown in Figure 8. An excitation signal was generated by
a B&K 3023 signal analyzer, then ampli"ed by a B&K 2706 power ampli"er, and exerted on
the plate through the B&K 4810 exciter. The force was measured by a B&K 8203
transducer "xed between the #exible string and the exciter, and the vibration responses were
sensed by the B&K 4397 accelerometers at "ve di!erent locations on the plate.

In general, the actuator is assigned at the location of the anti-node to ensure that enough
input energy is provided to the structure, and the accelerometers are located at those
positions where the peaks appear. To determine these locations properly, the following



Figure 4. Residual mode shapes of the S}F annular plate with c/a"0)2 and 0)05. (a) mode (1,0); (b) mode (2,0).

VIBRATION ANALYSIS OF ANNULAR PLATES 815
procedures were adopted: "rstly, the accelerometers were placed randomly to "nd the nodal
line (Figure 9, line ¸

1
). For mode (1,0), the cross-section of the anti-nodes will be

perpendicular to the nodal line, and it is 40% away from the central point. The
accelerometers were then set at locations (s

1
, s

3
, s

4
, s

5
, s

6
) as shown in Figure 9, and the

actuator at the point of the anti-node s
2

marked in the "gure.
In order to investigate the vibration around the hole, tests for the cases of c/a"0 and

c/a"0)2 were done, and the FRFs at points (s
1
, s

3
, s

4
, s

5
, s

6
) were recorded by an FFT

analyzer. The amplitudes at u"209)5 Hz (with respect to mode (1,0)) for these measuring
points were normalized, and the di!erences of these two cases were calculated. Figure 10
shows the simulation (at cross section) and experimental results of the residual mode shape
for the C}F annular plate with c/a"0)2. In this "gure, two peaks are observed, i.e., !0)133
at r/a"!0)2 (s

4
) and 0)141 at r/a"0)2(s

3
), while at other locations (s

1
, s

5
, s

6
), no obvious

changes were found. Obviously, good agreement is achieved between the simulation and
experiment. It means that signi"cant changes can be detected at the circumference of the
hole.

5. CONCLUSION

Vibration analyses of annular plates under di!erent boundary conditions and relative
hole sizes are presented. Signi"cant changes at the circumference of the hole can be detected



Figure 5. Displacement mode shapes of the F}F annular plate for modes (2,0) and (3,0). (a) c/a"0; (b) c/a"0)1;
(c) (a)}(b).
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by the residual mode shapes, which are characterized using the displacement mode
subtraction method. Analytical and numerical results show that even for a small c/a ratio,
the jump phenomena around the hole exist, and the number and locations of peaks can be
determined. Good agreement is found between the numerical simulations and the
experimental tests. It provides a guidance on vibration analysis and measurement for
annular plates, and the method may be applied to damage detection of circular plates.

ACKNOWLEDGMENT

The authors would like to thank the Research Committee of The Hong Kong
Polytechnic University for the "nancial support of this project.



Figure 6. Residual mode shapes of the F}F annular plate with c/a"0)2 and 0)05. (a) mode (2,0); (b) mode (3,0).

Figure 7. Residual mode shapes of the S}F annular plate with c/a"0)4. (a) mode (1,0); (b) mode (2,0).
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Figure 8. Schematic diagram of the experimental set-up: ** excitation point; ] ** measurement points.

Figure 9. Locations of the nodal line, the anti-nodes and the excitation and measurement points for mode (1,0).
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Figure 10. Residual mode shapes of the C}F annular plate with c/a"0)2 for mode (1,0):** simulation result:
* experimental result.
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APPENDIX A. DETAILED SOLUTIONS OF THE COEFFICIENTS A
in

(i"1,2 , 4)

Case 1: Clamped-outer, free-inner (C}F): In this case, the boundary conditions are
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n
(ik)

F
1
(n, kc/a) F

1
(n, ikc/a) F

2
(n, kc/a) F

2
(n, ikc/a)

/
1
(n, kc/a) /

1
(n, ikc/a) /

2
(n, kc/a) /

2
(n, ikc/a)

"0. (A4)

By solving the characteristic equation (A4) and making use of equation (A2), the coe$cients
(A

1n
, A

2n
, A

3n
, A

4n
) can be obtained as

A
1n
"!F

1
(n, ikc/a) DY

n
(k)H@

n
(ik)!Y@

n
(k)H

n
(ik) D#F

2
(n, kc/a) DJ

n
(ik)H@

n
(ik)!J@

n
(ik) H

n
(ik) D

!F
2
(n, ikc/a) DJ

n
(ik)Y@

n
(k)!J@

n
(ik) Y

n
(k) D ,

A
2n
"F

1
(n, kc/a) DY

n
(k)H@

n
(ik)!Y@

n
(k)H

n
(ik) D!F

2
(n, kc/a) DJ

n
(k)H@

n
(ik)!J@

n
(k) H

n
(ik) D

#F
2
(n, ikc/a) DJ

n
(k)Y@

n
(k)!J@

n
(k) Y

n
(k) D ,



VIBRATION ANALYSIS OF ANNULAR PLATES 821
A
3n
"!F

1
(n, kc/a) DJ

n
(ik)H@

n
(ik)!J@

n
(ik)H

n
(ik) D#F

1
(n, ikc/a) DJ

n
(k)H@

n
(ik)!J@

n
(k)H

n
(ik) D

!F
2
(n, ikc/a) DJ

n
(k) J@

n
(ik)!J@

n
(k) J

n
(ik) D ,

A
4n
"F

1
(n, kc/a) DJ

n
(ik)Y@

n
(k)!J@

n
(ik)Y

n
(k) D!F

1
(n, ikc/a) DJ

n
(k)Y@

n
(k)!J@

n
(k)Y

n
(k) D

#F
2
(n, kc/a) DJ

n
(k) J@

n
(ik)!J@

n
(k) J

n
(ik) D . (A5)

Case 2: Simply supported-outer, free-inner (S}F)
In this case, the boundary conditions are

=
n
(r, h)"M

n
(r, h) D

r/a
"0,

(A6)

M
n
(r, h)"<

n
(r, h) D

r/c
"0.

Similar to the derivation of C}F case, one gets

A
1n
"!F

1
(n, ikc/a) DY

n
(k)F

2
(n, ik)!F

2
(n, k)H

n
(ik) D#F

2
(n, kc/a) DJ

n
(ik)F

2
(n, ik)

!F
1
(n, ik)H

n
(ik) D!F

2
(n, ikc/a) DJ

n
(ik)F

2
(n, k)!F

1
(n, ik)Y

n
(k) D,

A
2n
"F

1
(n, kc/a) DY

n
(k)F

2
(n, ik)!F

2
(n, k)H

n
(ik) D!F

2
(n, kc/a) DJ

n
(k)F

2
(n, ik)

!F
1
(n, k)H

n
(ik) D!F

2
(n, ikc/a) DJ

n
(k)F

2
(n, k)!F

1
(n, k)Y

n
(k) D, (A7)

A
3n
"!F

1
(n, kc/a) DJ

n
(ik)F

2
(n, ik)!F

1
(n, ik)H

n
(ik) D#F

1
(n, ikc/a) DJ

n
(k)F

2
(n, ik)

!F
1
(n, k)H

n
(ik) D!F

2
(n, ikc/a) DJ

n
(k)F

1
(n, ik)!F

1
(n, k) J

n
(ik) D,

A
4n
"F

1
(n, kc/a) DJ

n
(ik)F

2
(n, k)!F

1
(n, ik)Y

n
(k) D!F

1
(n, ikc/a) D J

n
(k)F

2
(n, k)

!F
1
(n, k)Y

n
(k) D#F

2
(n, kc/a) DJ

n
(k)F

1
(n, ik)!F

1
(n, k) J

n
(ik) D.

Case 3: Free-outer, free-inner (F}F)
In this case, the boundary conditions are described as

M
n
(r, h)"<

n
(r, h) D

r/a
r/c

"0. (A8)

Similarly, the parameters (A
1n

, A
2n

, A
3n

, A
4n

) are in the form

A
1n
"!F

1
(n, ikc/a) DF

2
(n, k)/

2
(n, ik)!F

2
(n, ik)/

2
(n, k) D#F

2
(n, kc/a) DF

1
(n, ik)/

2
(n, ik)

!F
2
(n, ik)/

1
(n, ik) D!F

2
(n, ikc/a) DF

1
(n, ik)/

2
(n, k)!F

2
(n, k)/

1
(n, ik) D,

A
2n
"F

1
(n, kc/a) DF

2
(n, k)/

2
(n, ik)!F

2
(n, ik)/

2
(n, k) D!F

2
(n, kc/a) DF

1
(n, k)/

2
(n, ik)

!F (n, ik)/ (n, k) D#F (n, ikc/a) DF (n, k )/ (n, k)!F (n, k)/ (n, k) D, (A9)

2 1 2 1 2 2 1
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A
3n
"!F

1
(n, kc/a) DF

1
(n, ik)/

2
(n, ik)!F

2
(n, ik)/

1
(n, ik) D#F

1
(n, ikc/a)DF

1
(n, k)/

2
(n, ik)

!F
2
(n, ik)/

1
(n, k) D!F

2
(n, ikc/a) DF

1
(n, k)/

1
(n, ik)!F

1
(n, ik)/

1
(n, k) D,

A
4n
"F

1
(n, kc/a) DF

1
(n, ik)/

2
(n, k)!F

2
(n, k)/

1
(n, ik) D!F

1
(n, ikc/a) DF

1
(n, k)/

2
(n, k)

!F
2
(n, k)/

1
(n, k) D#F

2
(n, kc/a) DF

1
(n, k)/

1
(n, ik)!F

1
(n, ik)/

1
(n, k) D.
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